Currious Abourt Marth

Proving Trig Identities Tips and Tricks

Proving trig identities is like solving a puzzle; if it doesn't work this way, try that way . . . "And he puzzled and puzzled 'till his puzzler was sore." – *Dr. Seuss*

Here are some strategies to try once you have set up your Left Side-Right Side table to work from.

Strategy	Examples
Switch everything to sine and cosine	$\tan x = \frac{\sin x}{\cos x}$ or $\sec x = \frac{1}{\cos x}$ or $\csc x = \frac{1}{\sin x}$
If there are fractions, create a common denominator for the entire side	$\frac{\sin^2 x}{\cos x} + \cos x = \frac{\sin^2 x}{\cos x} + \frac{\cos^2 x}{\cos x} = \frac{\sin^2 x + \cos^2 x}{\cos x}$
Try making the denominator on the left side and the right side the same	$LS = \frac{\sin^2 x}{(1 - \cos x)} \therefore \ RS = 1 + \cos x = (1 + \cos x) \cdot \frac{1 - \cos x}{1 - \cos x}$
Remember the Pythagorean Identity in its 3 forms	$\sin^2 x + \cos^2 x = 1$ or $\sin^2 x = 1 - \cos^2 x$ or $\cos^2 x = 1 - \sin^2 x$
Try expanding	$(\sin x + \cos x)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x$
Try factoring	$\sin^2 x - \sin^4 x = \sin^2 x (1 - \sin^2 x)$
Look for a difference of squares	$1 - \cos^2 x = (1 - \cos x)(1 + \cos x) \text{ or}$ $\sin^2 x - \cos^2 x = (\sin x - \cos x)(\sin x + \cos x)$
If both sides have only even powers of sine and cosine, try switching so that everything is either all sine or all cosine	$\sin^2 x + \cos^4 x = \sin^2 x + (\cos^2 x)^2 = \sin^2 x + (1 - \sin^2 x)^2$
You can replace any trig function with x , y and r and work with those variables instead; remember that $x^2 + y^2 = r^2$	$\sin \theta = \frac{y}{r}$ or $\cos \theta = \frac{x}{r}$ or $\tan \theta = \frac{y}{x}$
If there are compound or double angles (eg. $\sin 2x$ or $\cos(x + y)$) convert to single angles using compound or double angle formulas	$\sin 2x = 2 \sin x \cos x or \cos 2x = \cos^2 x - \sin^2 x or$ $\sin(x \pm y) = \sin x \cos y \pm \sin y \cos x or$ $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$