Curriours A bount Math

Working With Special Triangles Tips and Tricks

There are two special triangles that give us exact values for the trig ratios for three different angles: 30°, 45°, and 60°. When we want to know the exact value of a trig ratio (as opposed to a portion of the never-ending decimal that our calculator gives us) we use these special triangles.

Creating the Special Triangles

A Tip for Working with Special Triangles

Get into the habit of doing a quick sketch of the two special triangles on your work page when you start working. Use your sketch as a quick reference to confirm the trig ratios for the special angles and to confirm the angles if you are given exact trig ratios.

An Interesting Observation

There is an interesting pattern to the sine and cosine values for the angles 0°, 30°, 45°, 60°, and 90°. See the table to the right.

Note the consistency: before simplifying, all values have 2 as the denominator, all have a square root in the numerator;

Note the pattern: before simplifying, the numerator under the square root increases from 0 to 4 for sine and decreases from 4 to 0 for cosine.

Simplifying:

$$\frac{\sqrt{4}}{2} = \frac{2}{2} = 1;$$

 $\frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{1}{\sqrt{2}}$

AngleSine
ValueCosine
Value0°
$$\frac{\sqrt{0}}{2} = 0$$
 $\frac{\sqrt{4}}{2} = 1$ 30° $\frac{\sqrt{1}}{2} = \frac{1}{2}$ $\frac{\sqrt{3}}{2}$ 45° $\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$ $\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$ 60° $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{1}}{2} = \frac{1}{2}$ 90° $\frac{\sqrt{4}}{2} = 1$ $\frac{\sqrt{0}}{2} = 0$

Visit CuriousAboutMath.ca Facebook: CuriousAboutMath